Author:
Castro Alfonso,Fischer Emily M.
Abstract
AbstractWe show that a class of semilinear Laplace–Beltrami equations on the unit sphere in ℝn has inûnitely many rotationally symmetric solutions. The solutions to these equations are the solutions to a two point boundary value problem for a singular ordinary differential equation. We prove the existence of such solutions using energy and phase plane analysis. We derive a Pohozaev-type identity in order to prove that the energy to an associated initial value problem tends to infinity as the energy at the singularity tends to infinity. The nonlinearity is allowed to grow as fast as |s|p-1s for |s| large with 1 < p < (n + 5)/(n − 3).
Publisher
Canadian Mathematical Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献