Abstract
Root systems and Coxeter groups are important tools in multivariable analysis. This paper is concerned with differential-difference and integral operators, and orthogonality structures for polynomials associated to Coxeter groups. For each such group, the structures allow as many parameters as the number of conjugacy classes of reflections. The classical orthogonal polynomials of Gegenbauer and Jacobi type appear in this theory as two-dimensional cases. For each Coxeter group and admissible choice of parameters there is a structure analogous to spherical harmonics which relies on the connection between a Laplacian operator and orthogonality on the unit sphere with respect to a group-invariant measure. The theory has been developed in several papers of the author [4,5,6,7]. In this paper, the emphasis is on the study of an intertwining operator which allows the transfer of certain results about ordinary harmonic polynomials to those associated to Coxeter groups. In particular, a formula and a bound are obtained for the Poisson kernel.
Publisher
Canadian Mathematical Society
Cited by
364 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献