Abstract
AbstractGeneralized polynomials are defined as products of polynomials raised to positive real powers. The generalized degree can be introduced in a natural way. Several inequalities holding for ordinary polynomials are expected to be true for generalized polynomials, by utilizing the generalized degree in place of the ordinary one. Based on Remez-type inequalities on the size of generalized polynomials, we establish Bernstein and Markov type inequalities for generalized non-negative polynomials, obtaining the best possible result up to a multiplicative absolute constant.
Publisher
Canadian Mathematical Society
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献