Author:
Ladas G.,Stavroulakis I. P.
Abstract
AbstractConsider the nth order (n ≥ 1) delay differential inequalities and and the delay differential equation , where q(t) ≥ 0 is a continuous function and p, τ are positive constants. Under the condition pτe ≥ 1 we prove that when n is odd (1) has no eventually positive solutions, (2) has no eventually negative solutions, and (3) has only oscillatory solutions and when n is even (1) has no eventually negative bounded solutions, (2) has no eventually positive bounded solutions, and every bounded solution of (3) is oscillatory. The condition pτe > 1 is sharp. The above results, which generalize previous results by Ladas and by Ladas and Stavroulakis for first order delay differential inequalities, are caused by the retarded argument and do not hold when τ = 0.
Publisher
Canadian Mathematical Society
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献