Abstract
Let be a countable atomless Boolean algebra and let X be a countable partial ordering. We prove that there exists an embedding of X into which is recursive in X, and which destroys all suprema and infima of X which can be destroyed. We show that the above theorem is false when we try to preserve all suprema and infima of X instead of destroying them.
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Chapter 11 A bibliography of recursive algebra and recursive model theory;Handbook of Recursive Mathematics - Volume 1: Recursive Model Theory;1998