Abstract
The dimension [4] of a partially ordered set (poset) is the minimum number of linear orders whose intersection is the partial ordering of the poset. For a positive integer m, a poset is m-irreducible[10] if it has dimension m and removal of any element lowers its dimension. By the compactness property of finite dimension, every m-irreducible poset is finite and every poset of dimension ≧ m contains an m-irreducible subposet.
Publisher
Canadian Mathematical Society
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献