Abstract
AbstractIn this paperwe present a fixed point property for amenable hypergroups that is analogous to Rickert’s fixed point theorem for semigroups. It equates the existence of a left invariant mean on the space of weakly right uniformly continuous functions to the existence of a fixed point for any action of the hypergroup. Using this fixed point property, certain hypergroups are shown to have a left Haar measure.
Publisher
Canadian Mathematical Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献