Abstract
R denotes an associative ring with identity. Module means unitary right R-module. A module has finite Goldie dimension over R if it does not contain an infinite direct sum of nonzero submodules [6]. We say R has finite (right) dimension if it has finite dimension as a right R-module. We denote the fact that M has finite dimension by dim (M)<∞.A nonzero submodule N of a module M is large in M if N has nontrivial intersection with nonzero submodules of M [7]. In this case M is called an essential extension of N. N⊆′M will denote N is essential (large) in M. If N has no proper essential extension in M, then N is closed in M. An injective essential extension of M, denoted I(M), is called the injective hull of M.
Publisher
Canadian Mathematical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Relative injectivity and module classes;Communications in Algebra;1992-01
2. Modules;Journal of Soviet Mathematics;1983