Author:
Brockman William,Haiman Mark
Abstract
AbstractWe study the coordinate rings of scheme-theoretic intersections of nilpotent orbit closures with the diagonal matrices. Here μ′ gives the Jordan block structure of the nilpotent matrix. de Concini and Procesi [5] proved a conjecture of Kraft [12] that these rings are isomorphic to the cohomology rings of the varieties constructed by Springer [22, 23]. The famous q-Kostka polynomial is the Hilbert series for the multiplicity of the irreducible symmetric group representation indexed by λ in the ring . Lascoux and Schützenberger [15, 13] gave combinatorially a decomposition of as a sum of “atomic” polynomials with non-negative integer coefficients, and Lascoux proposed a corresponding decomposition in the cohomology model.Our work provides a geometric interpretation of the atomic decomposition. The Frobenius-splitting results of Mehta and van der Kallen [19] imply a direct-sum decomposition of the ideals of nilpotent orbit closures, arising from the inclusions of the corresponding sets. We carry out the restriction to the diagonal using a recent theorem of Broer [3]. This gives a direct-sum decomposition of the ideals yielding the , and a new proof of the atomic decomposition of the q-Kostka polynomials.
Publisher
Canadian Mathematical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献