The Rank of Jacobian Varieties over the Maximal Abelian Extensions of Number Fields: Towards the Frey–Jarden Conjecture
-
Published:2012-12-01
Issue:4
Volume:55
Page:842-849
-
ISSN:0008-4395
-
Container-title:Canadian Mathematical Bulletin
-
language:en
-
Short-container-title:Can. math. bull.
Author:
Sairaiji Fumio,Yamauchi Takuya
Abstract
AbstractFrey and Jarden asked if any abelian variety over a number field K has the infinite Mordell–Weil rank over the maximal abelian extension Kab. In this paper, we give an affirmative answer to their conjecture for the Jacobian variety of any smooth projective curve C over K such that #C(Kab) = ∞ and for any abelian variety of GL2-type with trivial character.
Publisher
Canadian Mathematical Society
Subject
General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Ramified covers of abelian varieties over torsion fields;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-11-01