Abstract
The theorem that every properly primitive binary quadratic form is capable of representing infinitely many prime numbers was first proved completely by H. Weber (5). The purpose of this paper is to give an elementary proof of the case where the form is ax2 + 2bxy + cy2, with a > 0, (a, 2b, c) = 1, and D = b2 — ac not a square. The cases where the form is ax2 + bxy + cy2 with b odd, and the case where the form is ax2+ 2bxy + cy2 with D a square, can be settled very simply once the first case is taken care of, and this is done in a page and a half in the Weber paper.
Publisher
Canadian Mathematical Society
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献