Abstract
The problems considered here arose in connection with the interesting use by Loeb [8] and Anderson [1], [2] of Loeb's measure construction [7] to define measures on certain topological spaces. The original problem, from which the results given here developed, was to identify precisely the family of sets on which these measures are defined.To be precise, let be a set theoretical structure and * a nonstandard extension of , as in the usual framework for nonstandard analysis (see [10]). Let X be a Hausdorff space in and stx the standard part map for X, defined on the set of nearstandard points in *X. Suppose, for example, µ is an internal, finitely additive probability measure defined on the internal subsets of *X.
Publisher
Canadian Mathematical Society
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献