Abstract
A semisimple symmetric space can be defined as a homogeneous space G/H, where G is a semisimple Lie group, H an open subgroup of the fixed point group of an involutive automorphism of G. These spaces can also be characterized as the affine symmetric spaces or pseudo-Riemannian symmetric spaces or symmetric spaces in the sense of Loos [4] with semisimple automorphism groups [3, 4]. The connected semisimple symmetric spaces are all known: they have been classified by Berger [2] on the basis of Cartan's classification of the Riemannian symmetric spaces. However, the list of these spaces is much too long to make a detailed case by case study feasible. In order to do analysis on semisimple symmetric spaces, for example, one needs a general structure theory, just as in the case of Riemannian symmetric spaces and semisimple Lie groups.
Publisher
Canadian Mathematical Society
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献