Abstract
Let X be a real Banach space. According to von Neumann's famous geometrical characterization X is a Hilbert space if and only if for all x, y ∈ XThus Hilbert space is distinguished among all real Banach spaces by a certain uniform behavior of the set of all two dimensional subspaces. A related characterization of real Lp spaces can be given in terms of uniform behavior of all two dimensional subspaces and a Boolean algebra of norm-1 projections [16]. For an arbitrary space X, one way of measuring the “uniformity” of the set of two dimensional subspaces is in terms of the real valued modulus of rotundity, i.e. for The space is said to be uniformly rotund if for each 0 we have .
Publisher
Canadian Mathematical Society
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献