Abstract
Let Π be an affine plane which admits a collineation τ such that the cyclic group generated by τ leaves one point (say X) fixed, and is transitive on the set of all other points of Π. Such “cyclic affine planes” have been previously studied, especially in India, and the principal result relevant to the present discussion is the following theorem of Bose [2]: every finite Desarguesian affine plane is cyclic. The converse seems quite likely true, but no proof exists. In what follows, we shall prove several properties of cyclic affine planes which will imply that for an infinite number of values of n there is no such plane with n points on a line.
Publisher
Canadian Mathematical Society
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献