Abstract
Abstract
Let
$\pi $
be an automorphic irreducible cuspidal representation of
$\text{GL}_{m}$
over
$\mathbb {Q}$
. Denoted by
$\lambda _{\pi }(n)$
the nth coefficient in the Dirichlet series expansion of
$L(s,\pi )$
associated with
$\pi $
. Let
$\pi _{1}$
be an automorphic irreducible cuspidal representation of
$\text{SL}(2,\mathbb {Z})$
. Denoted by
$\lambda _{\pi _{1}\times \pi _{1}}(n)$
the nth coefficient in the Dirichlet series expansion of
$L(s,\pi _{1}\times \pi _{1})$
associated with
$\pi _{1}\times \pi _{1}$
. In this paper, we study the cancellations of
$\lambda _{\pi }(n)$
and
$\lambda _{\pi _{1}\times \pi _{1}}(n)$
over Beatty sequences.
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献