Abstract
Abstract
We show that the Tits index
$E_{8,1}^{133}$
cannot be obtained by means of the Tits construction over a field with no odd degree extensions. The proof uses a general method coming from the theory of symmetric spaces. We construct two cohomological invariants, in degrees
$6$
and
$8$
, of the Tits construction and the more symmetric Allison–Faulkner construction of Lie algebras of type
$E_8$
and show that these invariants can be used to detect the isotropy rank.
Publisher
Canadian Mathematical Society