Simplicial (Co)-homology of
-
Published:2018-12-17
Issue:4
Volume:62
Page:756-766
-
ISSN:0008-4395
-
Container-title:Canadian Mathematical Bulletin
-
language:en
-
Short-container-title:Can. Math. Bull.
Author:
Farhat Yasser,Gourdeau Frédéric
Abstract
AbstractWe consider the unital Banach algebra $\ell ^{1}(\mathbb{Z}_{+})$ and prove directly, without using cyclic cohomology, that the simplicial cohomology groups ${\mathcal{H}}^{n}(\ell ^{1}(\mathbb{Z}_{+}),\ell ^{1}(\mathbb{Z}_{+})^{\ast })$ vanish for all $n\geqslant 2$. This proceeds via the introduction of an explicit bounded linear operator which produces a contracting homotopy for $n\geqslant 2$. This construction is generalised to unital Banach algebras $\ell ^{1}({\mathcal{S}})$, where ${\mathcal{S}}={\mathcal{G}}\cap \mathbb{R}_{+}$ and ${\mathcal{G}}$ is a subgroup of $\mathbb{R}_{+}$.
Publisher
Canadian Mathematical Society
Subject
General Mathematics