Abstract
AbstractFor $G$ a split semi-simple group scheme and $P$ a principal $G$-bundle on a relative curve $X\rightarrow S$, we study a natural obstruction for the triviality of $P$ on the complement of a relatively ample Cartier divisor $D\subset X$. We show, by constructing explicit examples, that the obstruction is nontrivial if $G$ is not simply connected, but it can be made to vanish by a faithfully flat base change, if $S$ is the spectrum of a dvr (and some other hypotheses). The vanishing of this obstruction is shown to be a sufficient condition for étale local triviality if $S$ is a smooth curve, and the singular locus of $X-D$ is finite over $S$.
Publisher
Canadian Mathematical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Geometrization of the TUY/WZW/KZ connection;Letters in Mathematical Physics;2024-06-21
2. Local triviality for G-torsors;Mathematische Annalen;2021-01-16