Vanishing Fourier Transforms and Generalized Differences in

Author:

Nillsen Rodney

Abstract

AbstractLet $\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD}\in \mathbb{R}$ and $s\in \mathbb{N}$ be given. Let $\unicode[STIX]{x1D6FF}_{x}$ denote the Dirac measure at $x\in \mathbb{R}$ , and let $\ast$ denote convolution. If $\unicode[STIX]{x1D707}$ is a measure, $\unicode[STIX]{x1D707}^{\star }$ is the measure that assigns to each Borel set $A$ the value $\overline{\unicode[STIX]{x1D707}(-A)}$ . If $u\in \mathbb{R}$ , we put $\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},u}=e^{iu(\unicode[STIX]{x1D6FC}-\unicode[STIX]{x1D6FD})/2}\unicode[STIX]{x1D6FF}_{0}-e^{iu(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD})/2}\unicode[STIX]{x1D6FF}_{u}$ . Then we call a function $g\in L^{2}(\mathbb{R})$ a generalized $(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD})$ -difference of order $2s$ if for some $u\in \mathbb{R}$ and $h\in L^{2}(\mathbb{R})$ we have $g=[\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},u}+\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},u}^{\star }]^{s}\ast h$ . We denote by ${\mathcal{D}}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},s}(\mathbb{R})$ the vector space of all functions $f$ in $L^{2}(\mathbb{R})$ such that $f$ is a finite sum of generalized $(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD})$ -differences of order  $2s$ . It is shown that every function in ${\mathcal{D}}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},s}(\mathbb{R})$ is a sum of $4s+1$ generalized $(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD})$ -differences of order  $2s$ . Letting $\widehat{f}$ denote the Fourier transform of a function $f\in L^{2}(\mathbb{R})$ , it is shown that $f\in {\mathcal{D}}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},s}(\mathbb{R})$ if and only if $\widehat{f}$   “vanishes” near $\unicode[STIX]{x1D6FC}$ and  $\unicode[STIX]{x1D6FD}$ at a rate comparable with $(x-\unicode[STIX]{x1D6FC})^{2s}(x-\unicode[STIX]{x1D6FD})^{2s}$ . In fact, ${\mathcal{D}}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},s}(\mathbb{R})$ is a Hilbert space where the inner product of functions  $f$ and  $g$ is $\int _{-\infty }^{\infty }(1+(x-\unicode[STIX]{x1D6FC})^{-2s}(x-\unicode[STIX]{x1D6FD})^{-2s})\widehat{f}(x)\overline{\widehat{g}(x)}\,dx$ . Letting $D$ denote differentiation, and letting $I$ denote the identity operator, the operator $(D^{2}-i(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD})D-\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}I)^{s}$ is bounded with multiplier $(-1)^{s}(x-\unicode[STIX]{x1D6FC})^{s}(x-\unicode[STIX]{x1D6FD})^{s}$ , and the Sobolev subspace of $L^{2}(\mathbb{R})$ of order $2s$ can be given a norm equivalent to the usual one so that $(D^{2}-i(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD})D-\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}I)^{s}$ becomes an isometry onto the Hilbert space ${\mathcal{D}}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},s}(\mathbb{R})$ . So a space ${\mathcal{D}}_{\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},s}(\mathbb{R})$ may be regarded as a type of Sobolev space having a negative index.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3