Sequential and distributive forcings without choice

Author:

Karagila AsafORCID,Schilhan JonathanORCID

Abstract

Abstract In the Zermelo–Fraenkel set theory with the Axiom of Choice, a forcing notion is “ $\kappa $ -distributive” if and only if it is “ $\kappa $ -sequential.” We show that without the Axiom of Choice, this equivalence fails, even if we include a weak form of the Axiom of Choice, the Principle of Dependent Choice for $\kappa $ . Still, the equivalence may still hold along with very strong failures of the Axiom of Choice, assuming the consistency of large cardinal axioms. We also prove that although a $\kappa $ -distributive forcing notion may violate Dependent Choice, it must preserve the Axiom of Choice for families of size  $\kappa $ . On the other hand, a $\kappa $ -sequential can violate the Axiom of Choice for countable families. We also provide a condition of “quasiproperness” which is sufficient for the preservation of Dependent Choice, and is also necessary if the forcing notion is sequential.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3