Abstract
AbstractGranville recently asked how the Mahler measure behaves in the context of polynomial dynamics. For a polynomial
$f(z)=z^d+\cdots \in {\mathbb C}[z],\ \deg (f)\ge 2,$
we show that the Mahler measure of the iterates
$f^n$
grows geometrically fast with the degree
$d^n,$
and find the exact base of that exponential growth. This base is expressed via an integral of
$\log ^+|z|$
with respect to the invariant measure of the Julia set for the polynomial
$f.$
Moreover, we give sharp estimates for such an integral when the Julia set is connected.
Publisher
Canadian Mathematical Society