Abstract
Abstract
Following Faber–Pandharipande, we use the virtual localization formula for the moduli space of stable maps to
$\mathbb {P}^{1}$
to compute relations between Hodge integrals. We prove that certain generating series of these integrals are polynomials.
Publisher
Canadian Mathematical Society
Reference10 articles.
1. [GKLS22] Giacchetto, A. , Kramer, R. , Lewa’nski, D. , and Sauvaget, A. , The spin Gromov–Witten/Hurwitz correspondence for ${\mathbb{P}}^1$ . Preprint, 2022. arXiv:2208.03259
2. [Blo20] Blot, X. , The quantum Witten–Kontsevich series and one-part double Hurwitz numbers. Geometry & Topology, Geom. Topol. 26(2022), no. 4, 1669–1743.
3. Towards an Enumerative Geometry of the Moduli Space of Curves
4. Quadratic recursion relations of Hodge integrals via localization;Tian;Acta Math. Sin. (Engl. Ser.),2003
5. Low degree GW invariants of spin surfaces;Kiem;Pure Appl. Math. Q.,2011