Abstract
AbstractA counter-example is provided to the conjecture of Y. S. Pawar and N. K. Thakare that a semilattice S with 0 is 0-distributive if and only if for each filter F and each ideal I such that F ∩ I = Ø, there exists a prime filter containing F and disjoint from I. This shows that 0-distributivity is not equivalent to weak distributivity. A characterization is also given of finite P-uniform semilattices in terms of 0-distributivity.
Publisher
Canadian Mathematical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Representable posets;Journal of Applied Logic;2016-07
2. Properties of Stone almost distributive lattices;Asian-European Journal of Mathematics;2015-03