Abstract
Consider the linear ordinary differential equation1where x ∊ En, the n-dimensional Euclidean space and A is an n × n constant matrix. Using a matrix result of Sylvester and a stability result of Perron, Lyapunov [4] established the following theorem which is basic in the stability theory of ordinary differential equations:Theorem (Lyapunov). The following three statements are equivalent:(I) The spectrum σ(A) of A lies in the negative half plane.(II) Equation (1) is exponentially stable, i.e. there exist μ, K>0 such that every solution x(t) of (1) satisfies2where ∥ ∥ denotes the Euclidean norm.(III) There exists a positive definite symmetric matrix Q, i.e. Q=Q* and there
exist q1,q2>0 such that3satisfying4where I is the identity matrix.
Publisher
Canadian Mathematical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献