Abstract
Let n be an ordinal. A partial ordering P of the ordinals T = T(n) = {w: w < n} is called natural if x P y implies x ⩽ y.A natural partial ordering, hereafter abbreviated NPO, of T(n) is thus a coarsening of the natural total ordering of the ordinals. Every partial ordering of a finite set 5 is isomorphic to a natural partial ordering. This is a consequence of the theorem of Szpielrajn (5) which states that every partial ordering of a set may be refined to a total ordering. In this paper we consider only natural partial orderings. In the first section we obtain theorems about the lattice of all NPO's of T(n).
Publisher
Canadian Mathematical Society
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献