Abstract
A prominent question in the study of modules over an integral domain has been: “When is the torsion submodule t(A) of a module A a direct summand of A?” A module is said to split when its torsion module is a direct summand. Clearly, every cyclic module over an integral domain splits. Interesting splitting problems have been explored by Kaplansky [14; 15], Rotman [20], Chase [4], and others.Recently, many concepts of torsion have been proposed for modules over arbitrary associative rings with identity. Two of the most important of these concepts are Goldie's torsion theory (see [1; 12; 22]) and the simple torsion theory (see [5; 6; 8; 9; 23], and their references).
Publisher
Canadian Mathematical Society
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献