Abstract
AbstractFor any finite abelian group A, let Ω(A) denote the group of units in the integral group ring which are mapped to cyclotomic units by every character of A. It always contains a subgroup Y(A), of finite index, for which a basis can be systematically exhibited. For A of order pq, where p and q are odd primes, we derive estimates for the index [Ω(A) : Y(A)]. In particular, we obtain conditions for its triviality.
Publisher
Canadian Mathematical Society