Abstract
In this paper we give local conditions for a rectilinear embedding of a non-bounded combinatorial manifold,Mn, in Euclidean space, which are sufficient to prove thatMnhas a transverse field (see 1.1 and 1.2, definitions).In a sequel to this paper (6), we will show how with this transverse field we can construct a normal microbundle for the embedded manifoldMn.Our object in this research was only to obtain an existence theorem for normal microbundles. However, the method of proof via the construction of a transverse field yields as corollaries by Cairns (1), Whitehead (9), or Tao (8), results on smoothing. Earlier smoothing results achieved by the construction of transverse fields in the special case of (global) codimension 1 were obtained by Noguchi (5), and Tao (7; 8).After the research for this paper was completed, a paper of Davis (2) came to our attention.
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Transverse field implies normal microbundle;Proceedings of the American Mathematical Society;1969