Abstract
AbstractAS a generalization of Morita duality, Kraemer introduced the notion of quasi-duality and showed that each left linearly compact ring has a quasi-duality. Let R be an associative ring with identity and R[[x]] the power series ring. We prove that (1) R[[x]] has a quasi-duality if and only if R has a quasi-duality; (2) R[[x]] is left linearly compact if and only if R is left linearly compact and left noetherian; and (3) R[[x]] has a Morita duality if and only if R is left noetherian and has a Morita duality induced by a bimodule RUS such that S is right noetherian.
Publisher
Canadian Mathematical Society
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献