Abstract
AbstractJ. Bellaïche and M. Dimitrov showed that the $p$-adic eigencurve is smooth but not étale over the weight space at $p$-regular theta series attached to a character of a real quadratic field $F$ in which $p$ splits. In this paper we prove the existence of an isomorphism between the subring fixed by the Atkin–Lehner involution of the completed local ring of the eigencurve at these points and a universal ring representing a pseudo-deformation problem. Additionally, we give a precise criterion for which the ramification index is exactly 2. We finish this paper by proving the smoothness of the nearly ordinary and ordinary Hecke algebras for Hilbert modular forms over $F$ at the overconvergent cuspidal Eisenstein points, being the base change lift for $\text{GL}(2)_{/F}$ of these theta series. Our approach uses deformations and pseudo-deformations of reducible Galois representations.
Publisher
Canadian Mathematical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献