Author:
Camere Chiara,Garbagnati Alice,Mongardi Giovanni
Abstract
AbstractThe aim of this paper is to construct Calabi–Yau 4-folds as crepant resolutions of the quotients of a hyperkähler 4-fold $X$ by a non-symplectic involution $\unicode[STIX]{x1D6FC}$. We first compute the Hodge numbers of a Calabi–Yau constructed in this way in a general setting, and then we apply the results to several specific examples of non-symplectic involutions, producing Calabi–Yau 4-folds with different Hodge diamonds. Then we restrict ourselves to the case where $X$ is the Hilbert scheme of two points on a K3 surface $S$, and the involution $\unicode[STIX]{x1D6FC}$ is induced by a non-symplectic involution on the K3 surface. In this case we compare the Calabi–Yau 4-fold $Y_{S}$, which is the crepant resolution of $X/\unicode[STIX]{x1D6FC}$, with the Calabi–Yau 4-fold $Z_{S}$, constructed from $S$ through the Borcea–Voisin construction. We give several explicit geometrical examples of both these Calabi–Yau 4-folds, describing maps related to interesting linear systems as well as a rational $2:1$ map from $Z_{S}$ to $Y_{S}$.
Publisher
Canadian Mathematical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献