Author:
Bauschke Heinz H.,Güler Osman,Lewis Adrian S.,Sendov Hristo S.
Abstract
AbstractA homogeneous real polynomial p is hyperbolic with respect to a given vector d if the univariate polynomial t ⟼ p(x − td) has all real roots for all vectors x. Motivated by partial differential equations, Gårding proved in 1951 that the largest such root is a convex function of x, and showed various ways of constructing new hyperbolic polynomials. We present a powerful new such construction, and use it to generalize Gårding’s result to arbitrary symmetric functions of the roots. Many classical and recent inequalities follow easily. We develop various convex-analytic tools for such symmetric functions, of interest in interior-point methods for optimization problems over related cones.
Publisher
Canadian Mathematical Society
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献