Author:
Athanasiadis Christos A.,Santos Francisco
Abstract
AbstractMonotone paths on zonotopes and the natural generalization to maximal chains in the poset of topes of an oriented matroid or arrangement of pseudo-hyperplanes are studied with respect to a kind of local move, called polygon move or flip. It is proved that any monotone path on a $d$-dimensional zonotope with $n$ generators admits at least $\left\lceil 2n/\left( n-d+2 \right) \right\rceil -1$ flips for all $n\ge d+2\ge 4$ and that for any fixed value of $n-d$, this lower bound is sharp for infinitely many values of $n$. In particular, monotone paths on zonotopes which admit only three flips are constructed in each dimension $d\ge 3$. Furthermore, the previously known 2-connectivity of the graph of monotone paths on a polytope is extended to the 2-connectivity of the graph of maximal chains of topes of an oriented matroid. An application in the context of Coxeter groups of a result known to be valid for monotone paths on simple zonotopes is included.
Publisher
Canadian Mathematical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献