Abstract
The following problem is as yet unsolved: Given a convex polytope with N vertices in n-space, what is the maximum number of (n — 1)-faces which it can have? Aside from its geometric interest this question arises in connection with solving systems of linear inequalities and linear equations in non-negative variables. The problem is equivalent to asking for the best bound on the number of basic solutions for such problems and hence a bound (though a weak one) for the number of iterations needed in the simplex method for solving linear programmes.
Publisher
Canadian Mathematical Society
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献