Abstract
Suppose that S is a locally compact Hausdorff space. A one-parameter semi-group of maps in S is a family {ϕt; t ⩾ 0} of continuous functions from S into S satisfying(i)ϕt0ϕu = ϕt+u for t, u ⩾ 0, where the circle denotes composition, and(ii)ϕ0 = e, the identity map on S.A semi-group {ϕt} of maps in S is said to be(iii)of class (C0) if ϕt(x) → x as t → 0 for each x in S,(iv)separately continuous if the function t → ϕt(x) is continuous on [0, ∞) for each x in S, and(v)doubly continuous if the function (t, x) → (ϕt(x) is continuous on [0, ∞) x S.
Publisher
Canadian Mathematical Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献