Abstract
It is a commonplace that F is continuous on the cartesian square of the range of f if f is continuous and satisfies1say, for all real x, y (cf. e.g. [2]). A.D. Wallace has kindly called my attention to the fact, that this is trivial only if f is (constant or) strictly monotonic and asked for a simple proof of the strict monotonicity of f. The following could serve as such: if on an interval f is continuous, nonconstant and satisfies (1), then f is strictly monotonic there.
Publisher
Canadian Mathematical Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献