Abstract
For which permutation groups does there exist a subset of the permuted set whose stabilizer in the group is trivial?The permuted set has so many subsets that one might expect that subsets with trivial stabilizer usually exist. The symmetric and alternating groups are obvious exceptions to this expectation. Another, more interesting, infinite family of exceptions are the 2-Sylow subgroups of the symmetric groups on 2n symbols, in their natural representations on 2n points.One of our main results, Corollary 1, sheds some light on this last family of groups. We show that when the permutation group has odd order, there is indeed a subset of the permuted set whose stabilizer in the group is trivial. Corollary 1 follows easily from Theorem 1, which completely classifies the primitive solvable permutation groups in which every subset of the permuted set has non-trivial stabilizer.
Publisher
Canadian Mathematical Society
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献