Author:
Bruillard Paul,Galindo Cásar,Hong Seung-Moon,Kashina Yevgenia,Naidu Deepak,Natale Sonia,Yael Plavnik Julia,Rowell Eric C.
Abstract
AbstractWe classify integral modular categories of dimension pq4 and p2q2, where p and q are distinct primes. We show that such categories are always group-theoretical, except for categories of dimension 4q2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara–Yamagami categories and quantum groups. We show that a non-grouptheoretical integral modular category of dimension 4q2 is either equivalent to one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising froma certain quantum group.
Publisher
Canadian Mathematical Society
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献