Canonical Vector Heights on Algebraic K3 Surfaces with Picard Number Two

Author:

Baragar Arthur

Abstract

AbstractLet V be an algebraic K3 surface defined over a number field K. Suppose V has Picard number two and an infinite group of automorphisms A = Aut(V/K). In this paper, we introduce the notion of a vector height h: V → Pic(V) ⊗ and show the existence of a canonical vector height with the following properties:where σ ∈ A, σ* is the pushforward of σ (the pullback of σ−1), and hD is a Weil height associated to the divisor D. The bounded function implied by the O(1) does not depend on P. This allows us to attack some arithmetic problems. For example, we show that the number of rational points with bounded logarithmic height in an A-orbit satisfiesHere, μ(P) is a nonnegative integer, s is a positive integer, and ω is a real quadratic fundamental unit.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite orbits for large groups of automorphisms of projective surfaces;Compositio Mathematica;2023-11-30

2. Orbits on K3 Surfaces of Markoff Type;Experimental Mathematics;2023-08-03

3. The Dynamical and Arithmetical Degrees for Eigensystems of Rational Self-maps;Bulletin of the Brazilian Mathematical Society, New Series;2019-08-13

4. Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties;Transactions of the American Mathematical Society;2015-11-06

5. Canonical vector heights on $K3$ surfaces – A nonexistence result;Rendiconti Lincei - Matematica e Applicazioni;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3