Author:
Adler Jeffrey D.,Lansky Joshua M.
Abstract
AbstractSuppose that is a connected reductive group defined over a field k, and ┌ is a finite group acting via k-automorphisms of satisfying a certain quasi-semisimplicity condition. Then the identity component of the group of -fixed points in is reductive. We axiomatize the main features of the relationship between this fixed-point group and the pair (,┌) and consider any group G satisfying the axioms. If both and G are k-quasisplit, then we can consider their duals *and G*. We show the existence of and give an explicit formula for a natural map from the set of semisimple stable conjugacy classes in G*(k) to the analogous set for *(k). If k is finite, then our groups are automatically quasisplit, and our result specializes to give a map of semisimple conjugacy classes. Since such classes parametrize packets of irreducible representations of G(k) and (k), one obtains a mapping of such packets.
Publisher
Canadian Mathematical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献