Author:
Barron Tatyana,Kerner Dmitry,Tvalavadze Marina
Abstract
AbstractWe study complex projective varieties that parametrize (finite-dimensional) filiform Lie algebras over ℂ, using equations derived by Millionshchikov. In the infinite-dimensional case we concentrate our attention on ℕ-graded Lie algebras of maximal class. As shown by A. Fialowski there are only three isomorphism types of ℕ-graded Lie algebras of maximal class generated by L1 and L2, L = 〈L1; L2〉. Vergne described the structure of these algebras with the property L = 〈L1〉. In this paper we study those generated by the first and q-th components where q > 2, L = 〈L1; Lq〉. Under some technical condition, there can only be one isomorphism type of such algebras. For q = 3 we fully classify them. This gives a partial answer to a question posed by Millionshchikov.
Publisher
Canadian Mathematical Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献