Abstract
AbstractWe prove that every infinite-dimensional Banach space X having a (not necessarily equivalent) real-analytic norm is real-analytic diffeomorphic to X \ {0}. More generally, if X is an infinitedimensional Banach space and F is a closed subspace of X such that there is a real-analytic seminorm on X whose set of zeros is F, and X/F is infinite-dimensional, then X and X \ F are real-analytic diffeomorphic. As an application we show the existence of real-analytic free actions of the circle and the n-torus on certain Banach spaces.
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献