Admissibility for a Class of Quasiregular Representations

Author:

Currey Bradley N.

Abstract

AbstractGiven a semidirect product G = NH where N is nilpotent, connected, simply connected and normal in G and where H is a vector group for which ad() is completely reducible and R-split, let τ denote the quasiregular representation of G in L2(N). An element ψL2(N) is said to be admissible if the wavelet transform f ⟼ 〈 f, τ(·)ψ 〉 defines an isometry from L2(N) into L2(G). In this paper we give an explicit construction of admissible vectors in the case where G is not unimodular and the stabilizers in H of its action on are almost everywhere trivial. In this situation we prove orthogonality relations and we construct an explicit decomposition of L2(G) into G-invariant, multiplicity-free subspaces each of which is the image of a wavelet transform . We also show that, with the assumption of (almost-everywhere) trivial stabilizers, non-unimodularity is necessary for the existence of admissible vectors.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orthonormal bases arising from nilpotent actions;Transactions of the American Mathematical Society;2023-10-11

2. Integrability properties of quasi-regular representations of NA groups;Comptes Rendus. Mathématique;2022-10-04

3. Coorbit spaces associated to integrably admissible dilation groups;Journal d'Analyse Mathématique;2021-12

4. A classification of continuous wavelet transforms in dimension three;Applied and Computational Harmonic Analysis;2019-05

5. Frames arising from irreducible solvable actions I;Journal of Functional Analysis;2018-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3