Abstract
AbstractGiven a semidirect product G = N ⋊ H where N is nilpotent, connected, simply connected and normal in G and where H is a vector group for which ad() is completely reducible and R-split, let τ denote the quasiregular representation of G in L2(N). An element ψ ∈ L2(N) is said to be admissible if the wavelet transform f ⟼ 〈 f, τ(·)ψ 〉 defines an isometry from L2(N) into L2(G). In this paper we give an explicit construction of admissible vectors in the case where G is not unimodular and the stabilizers in H of its action on are almost everywhere trivial. In this situation we prove orthogonality relations and we construct an explicit decomposition of L2(G) into G-invariant, multiplicity-free subspaces each of which is the image of a wavelet transform . We also show that, with the assumption of (almost-everywhere) trivial stabilizers, non-unimodularity is necessary for the existence of admissible vectors.
Publisher
Canadian Mathematical Society
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献