Author:
Fernández Bretón David J.
Abstract
AbstractWe answer two questions of Hindman, Steprāns, and Strauss; namely, we prove that every strongly summable ultrafilter on an abelian group is sparse and has the trivial sums property. Moreover, we show that in most cases the sparseness of the given ultrafilter is a consequence of its being isomorphic to a union ultrafilter. However, this does not happen in all cases; we also construct (assuming Martin's Axiom for countable partial orders, i.e., , a strongly summable ultrafilter on the Boolean group that is not additively isomorphic to any union ultrafilter.
Publisher
Canadian Mathematical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献