Author:
Chandee Vorrapan,David Chantal,Koukoulopoulos Dimitris,Smith Ethan
Abstract
AbstractLetting p vary over all primes and E vary over all elliptic curves over the finite field 𝔽p, we study the frequency to which a given group G arises as a group of points E(𝔽p). It is well known that the only permissible groups are of the form Gm,k:=ℤ/mℤ×ℤ/mkℤ. Given such a candidate group, we let M(Gm,k) be the frequency to which the group Gm,karises in this way. Previously, C.David and E. Smith determined an asymptotic formula for M(Gm,k) assuming a conjecture about primes in short arithmetic progressions. In this paper, we prove several unconditional bounds for M(Gm,k), pointwise and on average. In particular, we show thatM(Gm,k) is bounded above by a constant multiple of the expected quantity when m ≤ kA and that the conjectured asymptotic for M(Gm,k) holds for almost all groups Gm,k when m ≤ k1/4-∈. We also apply our methods to study the frequency to which a given integer N arises as a group order #E(𝔽p).
Publisher
Canadian Mathematical Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献