Frobenius Distribution for Quotients of Fermat Curves of Prime Exponent

Author:

Fité Francesc,González Josep,Lario Joan-Carles

Abstract

AbstractLet denote the Fermat curve over ℚ of prime exponent ℓ. The Jacobian Jac() of splits over ℚ as the product of Jacobians Jac(k), 1 ≤ k ≤ ℓ −2, where k are curves obtained as quotients of by certain subgroups of automorphisms of . It is well known that Jac(k) is the power of an absolutely simple abelian variety Bk with complex multiplication. We call degenerate those pairs (ℓ, k) for which Bk has degenerate CM type. For a non-degenerate pair (ℓ, k), we compute the Sato–Tate group of Jac(Ck), prove the generalized Sato–Tate Conjecture for it, and give an explicit method to compute the moments and measures of the involved distributions. Regardless of whether (ℓ, k) is degenerate, we also obtain Frobenius equidistribution results for primes of certain residue degrees in the ℓ-th cyclotomic field. Key to our results is a detailed study of the rank of certain generalized Demjanenko matrices.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chebyshev’s bias for Fermat curves of prime degree;The Ramanujan Journal;2024-08-02

2. An Exploration of Degeneracy in Abelian Varieties of Fermat Type;Experimental Mathematics;2024-06-24

3. Sato–Tate Distributions of Catalan Curves;Journal de théorie des nombres de Bordeaux;2023-05-04

4. Sato-Tate distributions of y2 = x − 1 and y2 = x2 − 1;Journal of Algebra;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3