Author:
Fité Francesc,González Josep,Lario Joan-Carles
Abstract
AbstractLet denote the Fermat curve over ℚ of prime exponent ℓ. The Jacobian Jac() of splits over ℚ as the product of Jacobians Jac(k), 1 ≤ k ≤ ℓ −2, where k are curves obtained as quotients of by certain subgroups of automorphisms of . It is well known that Jac(k) is the power of an absolutely simple abelian variety Bk with complex multiplication. We call degenerate those pairs (ℓ, k) for which Bk has degenerate CM type. For a non-degenerate pair (ℓ, k), we compute the Sato–Tate group of Jac(Ck), prove the generalized Sato–Tate Conjecture for it, and give an explicit method to compute the moments and measures of the involved distributions. Regardless of whether (ℓ, k) is degenerate, we also obtain Frobenius equidistribution results for primes of certain residue degrees in the ℓ-th cyclotomic field. Key to our results is a detailed study of the rank of certain generalized Demjanenko matrices.
Publisher
Canadian Mathematical Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献