Author:
Cojocaru Alina Carmen,Fouvry Etienne,Murty M. Ram
Abstract
AbstractLet E be an elliptic curve defined over ℚ and without complex multiplication. Let K be a fixed imaginary quadratic field. We find nontrivial upper bounds for the number of ordinary primes p ≤ x for which ℚ(πp) = K, where πp denotes the Frobenius endomorphism of E at p. More precisely, under a generalized Riemann hypothesis we show that this number is OE(x17/18 log x), and unconditionally we show that this number is We also prove that the number of imaginary quadratic fields K, with −disc K ≤ x and of the form K = ℚ(πp), is ≫E log log log x for x ≥ x0(E). These results represent progress towards a 1976 Lang–Trotter conjecture.
Publisher
Canadian Mathematical Society
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献