Author:
Cutkosky Steven Dale,Hà Huy Tài,Srinivasan Hema,Theodorescu Emanoil
Abstract
AbstractLet k be a field of characteristic 0, R = k[x1, … , xd] be a polynomial ring, and m its maximal homogeneous ideal. Let I ⊂ R be a homogeneous ideal in R. Let λ(M) denote the length of an Rmodule M. In this paper, we show thatalways exists. This limit has been shown to be e(I)/d! form-primary ideals I in a local Cohen–Macaulay ring, where e(I) denotes the multiplicity of I. But we find that this limit may not be rational in general. We give an example for which the limit is an irrational number thereby showing that the lengths of these extension modules may not have polynomial growth.
Publisher
Canadian Mathematical Society
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献