Abstract
AbstractThe initial version of the Birch and Swinnerton-Dyer conjecture concerned asymptotics for partial Euler products for an elliptic curve L-function at s = 1. Goldfeld later proved that these asymptotics imply the Riemann hypothesis for the L-function and that the constant in the asymptotics has an unexpected factor of. We extend Goldfeld's theorem to an analysis of partial Euler products for a typical L-function along its critical line. The general phenomenon is related to second moments, while the asymptotic behavior (over number fields) is proved to be equivalent to a condition that in a precise sense seemsmuch deeper than the Riemann hypothesis. Over function fields, the Euler product asymptotics can sometimes be proved unconditionally.
Publisher
Canadian Mathematical Society
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献